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We implement the method of fundamental solutions to compute
Stokes flow past or due to the motion of solid particles. The flow
is represented in terms of a collection of vectorial fundamental
solutions to the governing equations including the point force, the
potential dipole, and the couplet. The locations and strengths of
the fundamental solutions are cemputed by minimizing a functional
50 as to satisfy the required boundary conditions with highest accu-
racy. The method is applied to compute flow past or due to the
motion of spherical and sphercidal particles in an infinite fluid and
in a semi-infinite fluid bounded by a plane wall. The computed
locations and strengths of the singuliarities are compared with those
corresponding to exact discrete and continuous singularity repre-
sentations, and the computed force and torque exerted on the parti-
cles are compared with exact values available from analytical solu-
tions. It is found that the method yields excellent accuracy with a
moderate number of singularities in an extended range of particle
aspect ratios up to ten, and for ratios of the particle center to wall
separation hand particte radius aas low as h/a = 1.05. The computed
singularity solutions are used to establish generalized Faxen laws
for the force and torque.  © 1995 Academic Press, Inc.

1. INTRODUCTION

The method of fundamental solutions, or singularity method,
has found extensive applications in computing solutions to a
broad range of problems involving elliptic partial differential
equations in the fields of electromagnetics, acoustic scattering,
potential flow, Stokes flow, and elastostatics. The basic idea is
to express the solution in terms of a collection of singular
fundamental solutions to the governing equations, located out-
side the domain of selution, and then compute the strength and
possibly the location of the fundamental solutions in order to
satisfy the boundary conditions in some optimal sense.

In the present work we consider Stokes flow past stationary
or moving rigid particles. Although exact singularity representa-
tions are available for a limited number of cases involving
infinite flow past or due to the motion of particles with spherical
and ellipsoidal shapes [1-5], the existence of exact representa-
tions for more general shapes and types of flow has not been
established. The derivation of approximate singularity represen-
tations, however, is motivated by successful computation and
supportive theoretical evidence [6, 7]. Furthermore, the applica-
tion of singularity methods may be justified on the basis of the

boundary integral representation, by observing that the latter
provides us with a solution in terms of a continuous boundary
distribution of Green’s functions and their derivatives. One
might expect that condensing the distributed singularities into
discrete points and moving their poles outside the domain of
flow will not have a critical effect on the structure of the flow
even in the vicinity of the boundaries.

Apart from providing us with approximate solutions for given
boundary conditions, the singuiarity representation of the flow
due to the motion of a rigid particle and of the disturbance
flow due to presence of a particle in a linear flow has the added
benefit that it provides us with the generalized Faxen relations
[5]. The latter yield the force and torque exerted on a particle
as well as the associated coefficient of the stresslet when the
particle is held stationary in an arbitrary incident flow, in terms
of the values of the incident velocity and its derivatives at the
location of the singularities inside the particle. Evaluation of
the force is prerequisite for computing particle trajectories in
a viscous fluid, whereas evaluation of the coefficient of the
stresslet is necessary for computing the effective stress tensor
of dilute suspensions.

Recent developments in the area of generalized boundary
integral methods for Stokes flow have raised the importance of
accurate singularity representations. In the compound boundary
integral method, the flow due to a particle that is held stationary
in an incident flow is represented in terms of a collection of
singularities including point forces and couplets and a comple-
mentary component that is expressed in terms of a double-
layer hydrodynamic potential [4, 5]. The advantage of this dual
representation is that the mathematical problem is reduced to
solving a well-posed integral equation of the second kind, which
may be done using efficient iterative methods. Having available
an accurate singularity representation expedites the solution of
the integral equation and therefore reduces the cost of the com-
putations,

The majority of computational studies of Stokes flow past
particles using the method of fundamental solutions have been
conducted by introducing a collection of singularities at fixed
locations inside the particle and then by computing the strengths
of the singularities so as to satisfy the boundary conditions in
some approximate sense |4]. Recent work, however, has shown
that substantial gain in accuracy may be achieved by relaxing
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the restriction that the singularities are located at fixed positions
and by computing the optimal location of the singularities si-
multaneously with their strengths. Allowing the singularities
to move as a part of an optimization problem in connection
with an elliptic partial differential equation was first proposed
by Mathon and Johnston [8]. The method was subsequently
applied with success to study a number of problems in the fields
of electromagnetics, potential flow, heat transport, elastostatics,
Stokes flow in cavities, and acoustic scattering due to an obsta-
cle in a fluid or a solid [9-16]. Karageorghis and Fairweather
[17-20], in particular, solved a series of problems governed
by Laplace’s or the biharmonic equation, and Karageorghis
[21] obtained numerical solutions to free boundary problems
governed by Laplace’s equation.

Our main objective in the present paper is to investigate
the performance of the adaptive singularity method for prob-
lems of external Stokes flow. In Section 2 we outline
the principles of the methed and discuss the numericat
implementation. One noteworthy feature of the present formu-
lation is that the fundamental solutions are selected a priori
80 -as to satisfy the boundary conditions of vanishing normal
and tangential velocity on the boundaries the flow, thereby
simplifying the computations. In the present implementation,
the fundamental solutions are computed in terms of derivatives
of Green’s functions. Furthermore, the types of fundamental
solutions are selected according to the physical requirement
that the force and torque exerted on a particle have finite
values independently of the number of singularities involved
in the approximate representation.

In the first part of the numerical study we compare the
optimal singularity representations that emerge from solving
an optimization problem to the exact discrete or continuous
representations available for particles with spherical and sphe-
roidal shapes. Apart from demonstrating the accuracy and limi-
tations of the method, these comparisons address the question of
whether the converged locations and strengths of the numerical
representations may provide evidence for the existence of exact
representations, as well as illustrate the type of the exact repre-
sentations.

In the second part of the numerical study we examine the
performance of the method for problems of a semi-infinite
flow bounded by a plane wall. Overall, the results suggest that
satisfactory accuracy can be achieved with moderate computa-
tional effort, even for quite small particle-to-wall separation,
and this corroborates the application of the method by itself or
in combination with a boundary integral method to more general
problems of particulate flow.

Computation of the flow past or due to the motion of a
particle in term of singularities in low- and high-Reynolds
number flows is enjoying increasing popularity, and the deriva-
tion of accurate singularity representations will enhance the
physical relevance of dynamical simulations based on discrete
models [22]. The present work suggests that a substantial gain
in accuracy may be obtained by straightforward modifications
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FIG.1. Schematic illustration of Stokes flow past, or due to the translation
and rotation of a solid particle in the presence of a boundary.

of the basic implementation involving singuiarities with
fixed poles.

2. METHOD FORMULATION AND IMPLEMENTATION

Consider a three-dimensional Stokes flow u” past a rigid
particle, or flow due to the translation and rotation of a rigid
particle, as illustrated in Fig. 1. The motion of the fluid is
governed by the continuity equation and the stokes equation
for the velocity u and pressure P,

V-ou=0, —-VP+ uVu=0, {1
where w is the viscosity of the fluid. If the particle translates
with velocity U and rotates with angular velocity () about a
selected center X, the no-slip and no-penetration conditions
require that on the surface the particleu = U + £} X (x — X).
In the case of flow in an infinite domain, the disturbance flow
due to the particle must decay far from the particle. In all cases,
the velocity is required to vanish over any stationary solid
boundary 5.

To describe the flow due to the particle we introduce_ a
representation in terms of a collection of fundamental solutions
or singularities of the governing equations (1). These include
the Green’s function, representing the flow due to a point force,
the point source, and other derivative singularities discussed in
reference [3]. In the present implementation, we use two-index
singularities denoted by S, with strengths g% and poles x*
located within the particle, including the point force, the cou-
plet, and the point source dipole, thus writing

N
vix) = ul' (%) + 2 S x)g ), (2)
n=l

where v is an approximation to the exact flow u. The singulari-
ties are designed so as to satisfy the boundary conditions over
S, that is, S(x, x) = 0 when x is on 5. The specific form
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of the singularities for low in an infinite domain and in a semi-
infinite domain bounded by a plane wall can be found in [5]
and, in the interest of space, will not be repeated. The stress
field corresponding to the flow (2) is given by

N
0w (X) = o3(x) + 2 TH(x, x™)g ", 3)

n=1

where T is the stress tensor corresponding to the fundamental
solutions [5].

It can be shown that, with the exception of the point source,
all the fundamental solutions of Stokes flow may be expressed
in terms of derivatives of the Green's function G representing
the flow due to a point force. Thus, the representation (2) may
be written in the equivalent form

vix) = uf(x) + > LEG(x, x")g ", (@)
n=1

where the operators L™, acting with respect to x*, determine
the nature of the fundamental solutions. For instance, in the
case of the point force L is the identity operator I, in the case
of the point source dipole L. = (—#)IV?, and in the case of the
couplet L; = ey, d/x,.

For flow due to a particle that translates or rotates in an
otherwise quiescent fluid, we exploit the linearity of the solution
on the velocity of translation U and angular velocity of rotation
{} to write, respectively,

010 = U 3, MG, 5, ),
N (5)
Uf(x) = Qk Z N%)<G[j(X, X"’))),
n=1

where M and N are operators that determine the nature and
distribution of the fundamental selutions and are linear combi-
nations of the fundamental operators L™, The generalized Faxen
relations provide us with the force F and torque T on a stationary
particle that is immersed in an ambient flow in the form [3]

N N
Fi=8mu 2‘1 MPur), Tx) = 8mu Z} NP,  (6)

The approximate singularity representations provide us with an
approximation to the operators M and N involved in (6).

2.1. Computation of the Singularity Representation

Mathon and Johnston [8] proposed computing the strengths
and locations of the singularities so as to satisfy the boundary
conditions with the highest possible accuracy. This is done
by minimizing an appropriate functional G which is typically

derived by performing the Galerkin or least-squares projection
on the boundary conditions.

To derive an appropriate functional for Stokes flow in the
presence of a particle, we introduce the Lorentz reciprocal
theorem stating that any two flows u® and u® that vanish at
infinity with corresponding boundary tractions £ and ™, must
satisfy the reciprocal relation

J'B ul - f2 g = fB u®-f 48, (7}

where f = o-n, ¢ is the stress tensor, and n is the unit vector
normal to the particle surface pointing into the ambient fluid
[5]. Applying (7) with u®” = u — u” and u¥ = v — u and
requiring the boundary condition w = U + 0 X (x — X),
we obtain

U-AF+Q-AT=jB[v—U—Q><(x—X)]-fmds
%, £
+Luf ds, (8)

where A indicates the error due to the approximations involved
in the singularity representation (2).

In the absence of an incident flow the second integral on the
right-hand side of (8) vanishes and, in order to compute the force
F and torque T exerted on the particle with highest accuracy, we
must minimize the functional represented by the first integral
on the right-hand side. Approximating the tractions due to the
flow u with those due to the flow v, we interpret this integral
as the projection of the error in the required boundary conditions
onto the traction field associated with the singularity representa-
tion (2).

In practice, to reduce the cost associated with the computation
of the boundary tractions, we prefer to use the alternative least-
squares functional

GEL|v—U—QX(XwX)|2dS 9)

which has been the standard choice in previous studies [9-21].
Minimizing & with respect to the strength of the singularities
yields a system of linear algebraic equations for ¢, whereas
minimizing it with respect to the location of the singularities
yields a nonlinear algebraic system for x*. Previous computa-
tions solved the problem using standard minimization methods
but, since the number of fundamental solutions we employ is
moderate, we prefer to use standard Newton's iterations.

The iterations proceed by first guessing the optimal position
x™ of each fundamental solution, solving the linear system of
equations for the optimal strength of the singularities g, and
then solving the nonlinear system of equations for the new
positions of the singularities while maintaining the strengths
fixed. Thus, to initialize the computation, we supply the initial
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locations of the singularities but not their strengths. The Jacob-
ian matrix for Newton’s iterations is computed analytically in
simple cases and numerically for the more involved cases. The
global iterations are terminated when the difference in both the
strength and position of the singularities between the current
and previous step is less than a threshold value which is typically
set to 107°.

To reduce the computational cost even further, we replace
the differential surface element dS in (9) over the surface of
spheres or spheroids with the product d £édw, where £ and 7 are
the natural surface spheroidal cotrdinates. We use the 128-point
15th-degree spherical product Gauss quadrature for integration
over a spherical particle [23], and the 4-point Gauss quadrature
in both the azimuthal and polar cotrdinates for integration over
properly defined boundary elements over a spheroidal particle.
The computations were carried out on a SUN SPARCstation 1,
and require from less than 1 min to 10 min of CPU time in
each case.

3. EXACT REPRESENTATIONS

To investigate the performance of the numerical method, we
consider flow in an infinite domain and compare the numerical
results with available exact, discrete or continuous, singular-
ity solutions.

3.1. Sphere

The flow due to a sphere of radius g that translates with
velocity U may be represented exactly in terms of a Stokeslet,
denoted as G, and a potential dipole, denoted as D;;, both
placed at the center of the sphere as

ijs

ui(x) = 3aU;Gy(x, x°) — 1a°U;Dy(x, X°), (10)
where x¢ is the instantaneous position of the center of the sphere
which, for convenience, is placed at the origin [5]. Using the
numerical method with a Stokesler and a potential dipole al-
lowed to move along the axis of translation alone, we recover
the exact solution within a few iterations for a wide range of
initial guesses. For instance, when the singularities are placed
initially at x/a = 0.5 and x”/a = —0.4 the computations
converge in three iterations, whereas when x%/g = 0,95 and
xPla = —0.9 the iterations converge in five iterations. When
the initial location of the singularities is too close to the surface,
however, the numerical method converges to a local minimum
that is different from the global minimum corresponding to the
exact solution. This occurs, for instance, when both singularities
are placed initially at x/a = 0.99, in which case the converged
values are respectively x¢/a = 0.992 and x°/a = —0.984,
Similar behaviors occur when the singularities are allowed
to move in three dimensions. For instance, when the initial
guess for the Stokeslet is x6/a = (0.2, 0.4, —0.3) and for the
potential dipole x”/a = (—0.1, —0.3, 0.2), we recover the exact

FIG. 2. The flow due to the axial rotation of dumbbell-shaped bodies may
be represented by a pair of isolated couplets placed at the focal points.

solution in two iterations. When x%/a = (0.8, 0, 0) and x%/a =
(—0.7, 0, 0), on the other hand, the singularities converge to
x%fa = (0.974076, 0, 0) and x”/a = (—0.709324, 0, 0) with
corresponding strengths scaled respectively by al/ and &3U,
equal to (0.562, 0, 0) and (—0.000470, 0, 0).

The flow due to a sphere that rotates with angular velocity
{} may be represented exactly in terms of a single couplet C;; as

u,-(X) = GJQJ‘C;'J;(X, X(') (1])
[5]. Applying the numerical method with a single couplet yields
the exact solution within a few iterations. For instance, when
the initial position of the couplet is at x/a = 0.99, the couplet
moves and sits on the center of the sphere in six iterations.

3.2. Dumbbell-Shaped Bodies

Chwang and Wu [1] showed that the velocity field due to a
class of dumbbell-shaped bodies rotating around their axis with
angular velocity £} may be represented exactly in terms of a
pair of couplets with equal strengths [’y located at the focal
points of the dumbbells as illustrated in Fig. 2. The azimuthal
component of the velocity is

e
R (e e R (L I B S NG
(12)
Ioo= (e + g2y = (@’ —c*y
o = {Mct + d%) _Qa(az‘—ﬁ'rjcg
The three geometrical parameters a, ¢, and d are defined in
Fig. 2. Our computations with two couplets symmetrically situ-
ated and allowed to move along the x axis, converged to the
exact solution within a few iterations. If the couplets are placed
initially too close to the center of the dumbbell, the iterations
converge to a local minimum with the couplets collapsed at
x = 0. In the other extreme case where the couplets are placed
initially too close to the surface of the dumbbell, for instance
at x/a = *0.99, the solutton converges to a local minimum
with the couplets located almost on the surface of the dumbbells.
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FIG. 3. Computed strengths of couplets for a prolate spheroid with aspect
ratio e/b = 2.5, 5, and 10, rotating arcund its major axis. The parabola indicates
the continuous distribution correspending to the exact solution.

3.3. Rotating Prolate Spheroids

We consider next a case in which the exact singularity repre-
sentation takes the form of a continuous distribution. Chwang
and Wu [1] showed that the flow produced by a prolate spheroid
that rotates about its major axis with angular velocity (2 may
be represented in terms of a continuous distribution of couplets
over the focal length of the spheroid with parabolic density as

I+ 3
uf:ﬂ/[ = Z_IH( e)]f (c? — x8)Ci (X, Xo) dxo,
1—e I—e —c

(13)

where e is the eccentricity of the spheroid defined as e = c/a,
0 < e < 1, where c is the focal length of the spheroid given
by ¢? = a* — b? and a and b are the major and minor axes
of the spheroid.

In the numerical method we represent the flow using a set
of N couplets oriented along the x axis and distributed evenly
and symmetrically over the focal length of the spheroid. The
couplets are allowed to move during the iterations but only
along the axis of rotation. The results show that for a spheroid
with a small aspect ratio a/b = 2.5, five couplets are sufficient
to yield the torgue exerted on the spheroid accurate to the third
significant figure. In the converged solution, the position of the
couplets are x™/(ab)'? = 0, £0.658951, =1.188660 and the
computed torque coefficient A = T/{u{Maby”] is equal to
0.487374, while the exact value is 0.487524. The strengths of
the singularities are distributed in a nearly parabolic manner
in agreement with the exact solution as shown in Fig. 3, where
g* = q/[{Mab)*?]. If the exact representation were unknown,
this behavior would indicate the existence of an exact singular-
ity representation with parabolic density distribution.

For a spheroid with a higher aspect ratio, a larger but still
moderate number of singularities is required to achieve satisfac-
tory accuracy. For instance, when a/b = 5, using seven couplets
yields A = 0.312993 which is lower by less than 1% from the
exact value 0.315769. The converged locations of the singulari-
tiesare x™/(ab)'* =0, £0.697557, £1.341298, and £ 1.871404.
The distribution of the corresponding strengths shown in Fig. 3
exhibits a parabolic shape in accord with the exact solution.
For a spheroid with @/b = 10, using nine couplets yields
A = 0.202172 which differs from the exact value 0.215184 by
about 6%. The converged locations of the singularities are
xWfab)'? = 0, £0.691743, *=1.364495, +=1.998701, and
*2.574553. The accuracy is substantially improved by includ-
ing more couplets. For instance, using 11 couplets we obtain
A = 0.208492 which differs from the exact value by 3.1%. The
corresponding distribution of the dimensionalized strengths of
the couplets ¢* = g/[Q(ab)*"] is shown in Fig. 3. These results
indicate that the discrete singularity representation is effective
for elongated but not too slender bodies.

3.4. Translating Prolate Spheroids

Chwang and Wu [2] showed that the flow produced by a
prolate spheroid that transtates with velocity U may be repre-
sented in terms of a distribution of Stokeslets G and potential
dipotes D, over the focal length of the spheroid, oriented in the
direction of translation, with constant and parabolic densities,
respectively, in the form

s [(2)- (2]

= (14)
[Gij(x! xﬁ) - ( 262 ) (6.2 - XS)D,'}'(X. X(]) d’rﬂa
where A is a diagonal matrix with
An = eZ/[—ze +(1+e)n (i J: Z)]
(15)

Azg =A33 = 282/[_26 + (}. - 362)1[1 (i tZ)]

First, we consider axisymmetric motion along the x axis. For
a spheroid with moderate aspect ratio, /b = 2.5, we obtain
accurate solutions with three Stokeslets and three potential
dipoles symmetrically distributed, allowed to move, and ori-
ented along the x axis. The computed drag force coefficient
A = D/[pl(ab)"?] = 0.619061 agrees with the exact value
0.619039 in the fourth significant figure. The converged posi-
tions of the Stokeslets are x5/(ab)'? = (, £1.093752 and the
correspending strengths are g%/[U(ab)'?] = 0.352954 and
0.133053. For the dipoles we obtain x?/(ab)'? = 0, =1.043479
and g?/[U{aby"?] = —0.020467, —0.006499. When the aspect
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FIG. 4. Strengihs of (a) the Stokeslets, and (b) the potential dipoles over the focal length of a spherpid with aspecy ratio a/b = 2.5 translating along its
major axis, computed using 3. 5, and 7 singularities. The forms of the exact continuous distributions are indicated with solid lines.

ratio is increased to a/b = 5, five Stokeslets and five potential
dipoles are needed to achieve a comparable accuracy. The
computed reduced drag coefficient A = 0.598676 agrees with
the exact value 0.598643 in the fourth significant figure. In the
converged solution, the Stokeslets are located at x%/(ab)'? = 0,
*+1.262965, and +2.004412 and their strengths are
g%/ U(ab)'"?] = 0.192127, 0.149278, and 0.053997. The poten-
tial dipoles are located at x%/(ab)'? = 0, *1.212363, and
*+1.964228 and their strengths are ¢”/[U({ab)*?] = —0.004280,
—0.002921, and —0.000584. Results for large aspect ratios are
also remarkably accurate. For a/b = 10, seven Stokeslets and
seven potential dipoles yield A = 0,627844 which agrees with
the exact value 0.627823 in the fourth significant figure. For
alb = 15, the same number of singulartties results in a less
than 0.13% ditference in the computed drag coefficient A =
0.663730 and the exact value 0.664767.

1.0

05 X ® h

* %
x *

1 L L 1 L
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In Figs. 4a, b we plot the distribution of the reduced strengths
of the Stokeslets ¢g°* = g%/[U(ab)"?] and potential dipoles
gP* = g”/[U(ab)*?] over the focal length of the spheroid for
alb = 2.5, varying the number of singularities. The distribution
of the strengths of the Stokeslets shows significant deviations
from the exact uniform profile, whereas the distribution of the
strengths of the dipoles exhibits a nearly parabolic shape. In
both cases, we observe oscillatory behavior when the number
of singularities is increased to seven. If the exact solution were
not known, the approximate singularity representation would
not be able to indicate it in an unambiguous manner, although,
curiously enough, it produces the force and torque with remark-
able accuracy.

The performance of the numerical method in the case of
transverse translation is comparable to that for axial motion at
moderate aspect ratios. For instance, for a spheroid with

-15L ! : :

1.0 -0.5 0.0 0.5 1.0
x/c

FIG. 5, Strengths of (a) the Stokeslets, and (b) the potential dipoles over the focal length of a spheroid with a/b = 2.5 translating along its minor axis,
computed using 3, 5, and 7 singularities. The forms of the exact continuous distributions are indicated with solid lines.
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uw=(0,0, k)

FIG. 6. Illustration of {a) flow due to the translation and rotation of a solid
spherical particle in a semi-infinite domain bounded by a plane wall; (b) flow
past a stationary sphere placed in a semi-infinite simple shear flow above a
plane wall.

alb = 2.5, we obtain accurate solutions with five Stokeslets
and five potential dipoles that are free to move along the major
axis, distributed symmetrically and oriented in the direction of
translation. The computed drag force coefficient A = 0.73811
agrees with the exact value 0.73818 in the fourth significant
figure. In the converged solution, the Stokeslets are located at
x%/(ab)'? = 0, =0.802937, and *1.322621 and their strengths
are g%/[U(ab)?] = 0.218584, 0.176082, and (.083683. The
potential dipoles converge at x%/(ab)'? = 0, £0.76674, and
*£1.26805 with swengths g%/[U(ab)y?] = —0.041016,
—0.023784, and —0.004043. The behavior of the distributions
of the strengths of the Stokeslets and potential dipoles for
a/b = 2.5 are shown in Figs. 5a, b. As the number of singulari-
ties is increased the distributions tend to the constant or para-
bolic distributions required by the exact solution. Curiously,
the performance of the method for transverse motion, with an
associated three-dimensional flow, is better than that for axial
motion with an associated axisymmetric flow.

For a moderate aspect ratio a/b = 5, using seven Stokeslets
and seven potential dipoles yields A = 0.795162 which agrees

with the exact value 0.795246 in the third significant figure.
In the converged solution we obtain x°/(ab)'® = 0, =0.887398,
=1.600411, and *2.071695 with ¢?/{U(ab)?] = 0.173924,
0.143795, 0.109205, and 0.057621 for the Stokeslets and
Pl ab)? = 0, +0.884838, £1.586813, and +2.054529 with
qPIU@by?] = —0.016184, —0.010643, —0.004600, and
—0.000675 for the potential dipoles. Computations with a
higher number of singularities failed to converge, thus placing
limits on the capability of the numerical method. Furthermore,
accurate solutions could not be obtained for higher aspect ratics.
Computations with a relatively small number of singularities
provided unsatisfactory accuracy, whereas those with a large
number of singularities failed to converge.

4. A SPHERE IN SEML-INFINITE FLOW BOUNDED BY A
PLANE WALL

In the second part of the numerical study we consider the
flow due to the motion or presence of a spherical particle above
a plane wall and compare the numerical results with known
analytical solutions in bipolar codrdinates [4, 24]. In the numeri-
cal method we use fundamental solutions that satisfy the condi-
tion of vanishing velocity over the wall, derived in terms of
the corresponding Green’s function of Stokes flow [5].

4.1. Sphere Translating along or Rotating around an Axis
Normal to the Wall

We begin by considering axisymmetric flow due to a sphere
of radivs @ translating perpendicular to the plane wall along
the x axis as shown in Fig. 6a and represent the flow in terms
of a point force and a potential dipole located, oriented, and
allowed to move along the x axis. In Figs. 7a, b we plot the
converged displacement of the position of the point force and
potential dipole from the center of the sphere § = (x — h)/a,
as a function of the sphere-to-wall separation hA/a, and the
corresponding dimensionless strength of the singularities
g™ = g®(Uay and g"* = g?/{Ua®). As the sphere approaches
the wall, both singularities move off the center of the sphere

TABLE 1
Drag Coefficient A for a Sphere Moving Toward a Plane Wall

Fixed singularity

hla Present method Exact solution location

oo 1 1 I
10.067662 1.125245 1.1252465 1.125156
6.1322895 1.221980 1.2219882 1.221223
3.7621957 1.412795 1.4128629 1.405933
2.3524096 1.836388 1.8374749 1.770373
1.5430806 3.007633 3.0360641 2385381
1.1276260 7.056133 9.2517663 2.927308

1 o o] 0




86 ZHOU AND POZRIKIDIS

0.0 T 6.0 T T T T - T
|2 b
0.1 - ] 5O - —— mobile peint force N
) - --- fixed point force
-0.2 + 4 a" —— mobile potential dipole
4.0 ---- fixed potential dipzle
03 | & :
’ point force 30 L 4
04 L ---- potential dipolg
) 20 b .
05 -
06 . 10r 1
07 1 1 1 L 1 0-0 1 1 ] 1 +
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
{(h-a)h {h-a)h
0.20 g T — T T
c
- --- optimal position
—— optimal strength
a.10 1
0.00 1
L
-0.10 e P
0.0 0.2 0.4 0.6 0.8 1.0
(h-a)h

FIG. 7. A sphere translating normal 1o a plane wall: {a) displacement of the point force, §% and potential dipole 8% off the center of the sphere; (b)
asseciated optimal strengths g* as functions of the sphere-to-wall separation, (¢} A sphere rotating around an axis that is perpendicular to a plane wall; the
displacement and optimal strength of the couplet as a function of the dimensionless sphere-to-wall separation.

towards the wall. For instance, when h/a = 10.06766, the
displacement of the point force from the center of the sphere
is less than 1% the sphere radius, but increases to more than half
the sphere radius for A/a = 1.127626. When the singularities
are placed initially at the center of the sphere, the number of
necessary iterations increases from 3 to 64 as h/a is decreased
from 10.06766 to 1.127626.

In Table I we present the computed values of the drag coeffi-
cient A defined in terms of the drag force by D = 6muialU
and compare them with the exact values provided by Brenner
[24, 25] obtained from a series solution in bipolar codrdinates.
We observe agreement in the fifth significant figure for #/a > 6,
in the fourth significant figure for h/a = 3.7621957, and in
the third significant figure for A/fa = 2.35241. As the sphere
approaches the wall, the error increases from less than 1% at
hia = 1.54308 to 24% for h/a = 1.127626. Thus, using two
singularities provides us with accurate results only when
hia > 1.5. To assess the gain in accuracy due to the adaptive

computation of the position of the singularities, in Table I we
also include results of a computation in which the singularities
are restricted to lie at the center of the sphere and the functional
is optimized only with respect to their strength. The correspond-
ing strengths of the fixed singularities are shown in Fig. 7b.
Comparisons show that the solutions with moving singularities
are substantially more accurate than those for fixed singularities,
especially at close sphere-to-wall separations.

Using a higher number of singularities extends the range of
accuracy of the method to smaller sphere-to-wall separations.
For instance, the drag coefficient computed using two point
forces and two potential dipoles for Afa = 1.127626 is A =
9.190055, which differs only by 0.67% from the exact value
9.2517663. These results encourage the application of the
method to problems of bounded particulate flow.

In the case of a sphere spinning with angular velocity (2
around an axis that is perpendicular to the wall, we represent
the flow in terms of a collection of couplets whose induced
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TABLE II

Torque Coefficient A for a Sphere Rotating
Perpendicular to a Plane Wall

hia Present method Exact solution
10.07049 1.000123 1.0001
6.13121 1.000544 1.0005
3.76223 1.002369 1.002
3.10752 1.004226 £.004
2.57732 1.007467 1.007
2.15100 1.013013 1.013
1.81061 1.022263 1.022
1.54297 1.037102 1.036
1.33743 1.059580 1.057
1.18554 1.090722 1.087
1.08108 1.127477 1.126
1.020096 1.158709 1.171

velocity vanishes over the wall. Using just one couplet we
cbtain results for the torque that are in remarkable agreement
with the exact solution due to Jeffery [26] as shown in Table
II. For instance, when A/a = 1.02, the difference in the com-
puted value of the torque coefficient A defined in terms of the
torque by T = 8muaA{) and that given by Jeffery’s exact
solution is only 1.1%. In Fig. 7c we present the displacement
§ = (x — hYa and optimal strength g* = ¢/(Qa®) of the
couplet. As the sphere approaches the wall, the couplet moves
off the center of the sphere towards the wall, but not by a
substantial distance. For instance, when #/a = 1.02 the couplet
is located at a distance & = .073 below the center of the sphere.

4.2. Sphere Translating along or Rotating around an Axis
Parallel to the Wall

In this case the flow is three-dimensional but with fore-and-
aft symmetry. In the case of translation, the singularity system

0.0 . T

0.1

——— point force

0.3 -~~~ potential dipcle d
—-— couplet
-0.4 4
-0.5 1 . ) L L .
0.0 0.2 0.4 06 0.8 1.0

(h-a)/h

TABLE III

Drag Coefficients for the Force and Torque on a Sphere Translating
Parallel to a Wall

Present method Exact solution

hia Drag Torque Drag Torque
10.0677 —1.059060 9.78725E-6 —1.0591 8.77T44E-6
3.7622 = L173777 5.54782E-4 —1.1738 4.2160E-4
2.3524 —1.307253 4.20546E-3 -1.307¢ 2.6423E-3
1.5431 —1.557402 3.03392E-2 —1.3675 1.4649E-2
1.1276 —2.0256358 1.83382E-1 -21514 7.37T18E-2
1.0453 —2.321323 3.33620E-1 —2.6475 1.4552E-1
1.005004 —2.595163 4.94225E-1 —3.7863 3.4187E-1

includes a point force and a potential dipole oriented in the
direction of translation, as well as a couplet oriented parallel
to the wall along the y axis. In the numerical method the
singularities are allowed to move in a direction perpendicular
to the wall along the x axis. In Figs. 8a, b we plot the optimal
position & = {x — h)/a and strengths of the singularities
g%* = g%(Ua) and g°* = g?/(Ua’), and g“* = g%/(Ua?), and
in Table III we present the values of the drag coefficients for
the force and torque along with the exact values computed from
a solution in bipolar coordinates [27]. For hfa = 2.3524 the
computed drag force coefficient agrees with that given by the
exact solution in the fourth significant figure, but for lower
separations we obtain significant discrepancies. The disagree-
ment for the torque coefficient is prominent, due to the fact
that its small numerical values are shielded by the dominant
coatributions due to numerical error.

To improve the accuracy we used a higher number of singu-
larities but found that, during the iterations, the singularities
approach each other to form dipoles. This is interpreted as

2.0 b T T T T - T

———— point force

- --- potential dipole
1.5 —-— couplet y

qt
1.0 b
0.5 - ___ ]
0.0 Il ' 1 ) T - -+ -
0.0 0.2 0.4 0.6 0.8 1.0

{h-a)/h

FIG. 8. A sphere translating parallel to a plane wall. (a} Displacement & of the point force (solid line}, potential dipole (dashed line), and couplet (long-
dashed line), off the center of the sphere; (b) associated optimal strengths g* as functions of the dimensionless sphere-to-wall separation.
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TABLE IV

Force and Torque Coefficients of a Sphere Fotating Parallel to a

Plane Wall

Present method

Exact solution

hia Drag Torque Drag Torque
10.0677 1.03768E-5 1.000123 1.1699E-5 1.0003
3.7622 5.90360E-4 1.002417 5621464 1.0059
2.3524 4.32729E-3 1.010402 3.5231E-3 1.0250
1.5431 2.8761E-2 1.042248 1.9532E-2 1,0998
1.1276 1.38501E-1 1.153471 9.6291E-2 1.3877
1.0453 2.40875E-1 1.252447 1.9403E-] 1.6996
1.005004 4.42339E-1 1.444596 4.5582E-1 2.5056
1.003202 4.70858E-1 1.472401 5.1326E-1 2.6793

FIG. 9. A solid sphere rotating around an zxis parallel to a plane wall.
Displacement of the point force, 8¢ (solid plain ling), and couplet & (solid
bold line), off the center of the sphere, and the associated optimal strength of
the point force, g* (dashed plain line), and couplet, g°* (dashed bold line),
as functions of the sphere center-to-wall separation.

evidence that higher order singularities such as the point force
dipole, potential quadruple, and couplet dipole are more appro-
priate in the singularity representation.

In the case of a sphere rotating around an axis that is parallel
to a plane wall, the singularity system includes a point force
oriented parallel to the wall but perpendicular to the axis of
rotation and a couplet oriented along the axis of rotation. Both
the point force and couplet are located at the center of the sphere
initiatly and are allowed to move along the x axis throughout the
computation. The optimal location and strength of the singulari-
ties are shown in Fig. 9. Comparing the computed drag coeffi-
cient for the force and torque with the exact sclution in bipolar

0.40 T T \ T

030 | . 1

0.20

0.10

0.00

-0.10 1 " L 1 L
0.0 0.2 0.4 0.6 0.8 1.0

coordinates of Goldman et al. [27], shown in Table 1V, reveals
noticeable discrepancies, even at large separations. Using a
higher number of singularities we run into convergence diffi-
culties associated with the formation of dipoles, once again
indicating a necessity for including higher-order singularities
in the discrete representation.

4.3. A Sphere in a Simple Shear Flow

As a last case, we consider flow past a sphere that is held
stationary in a simple shear flow u™ = (0, 1), kx), above a plane
wall as shown in Fig. 6b. The singularity system involves point
forces, potential dipoles, and couplets, situated and allowed to
move along the x axis. The point forces and potential dipoles
are oriented in the streamwise direction, whereas the couplets
are oriented along the y axis. Numerical experimentation
showed that the best results are achieved using two point forces,
two potential dipoles, and one couplet. The optimal positions

10 T T T T T

-20 L " L ) . 1
0.0 0.2 0.4 0.8 0.8 1.0

{h-a)h

FIG. 10. A solid sphere placed in a simple shear flow above a plane wall. (a) Displacements of the point forces &% (plain solid and plain dashed line),
potential dipoles 8” (boltd solid and bold dashed line), and couplet 8¢ (dot-dashed line); (b) corresponding optimal strengths ¢* as functions of the sphere-to-

wall separation.
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TABLE V

Force and Torque on a Stationary Sphere in a Simple Shear Flow

Present method Faxen’s Law Exact solution

hia Drag Torque Drag Torque  Drag  Torque
% 1 1 1 1

100677 1.058738 0999928 1.058737 0.999922 1.0587 0.99981
1.7622 1167119 0.998470 1167039 0998117 1.1671 09971}
2.3524 1.277894 (.993005 1277323 099(888 1.2780 0.99010
1.5431 1436590 0.975395 1.434287 097809 1.43%1 057419
1.1276 1.603623 0.949630 1.597015 0.949103 1.6160 095374
1.0453 1.650884 0.943320 1.637376 00949619 1.6682 0.9476%
1.005004  1.675926 0.940954 1.654914 0.947708 1.6969 0.94442
1.003202 1.677066 0.940878 0.947839 16982 0.94427
1.0006 1.679014 (.941140 1.7005 054399

and strengths of the singularities are plotted in Figs. 10a, b,
where ¢%* = g%/(ka®), ¢°* = q°/(ka*), ¢©* = q“/{ka®).

The numerical results for the drag force and torque coeffi-
cients shown in Table V are compared with the exact solution
in bipolar coordinates provided by Goldman et al. [28]. The
agreement ranges from excellent to good. It is striking to ob-
serve that even when the sphere touches the wall, the error in
the drag force is less than 2%, and in the torque itis less than 1%.

It is interesting to compute the force and torque exerted on
the sphere using Faxen's laws, derived on the basis of the
singularity representations for translation and rotation discussed
previously in this section. The results computed using the gener-
alized Faxen relations, shown in Table V, are comparable to
the numerical solutions and provide us with accurate approxi-
mations to the exact solutions. In this light, the singularity
locations and strengths presented in previous tables and figures
acquire special significance for computing particle motions in
a viscous fluid.
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